

LKS Faculty of Medicine TNU School of Public Health 香港大學公共衞生學院

Vitamin C and multiple disease outcomes in adults: a systemic review of mendelian randomization studies

Junmeng Zhang¹; Kexin Sun²; Lai Ling Hui³; Jie V Zhao¹

Junmeng Zhang (PhD) Primary Supervisor: Prof Jie Zhao

¹School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China ²Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China ³Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, China

Background

29

Vitamin C has several important functions and many health benefits; however, its protective role in multiple disease outcomes remains ambiguous. Mendelian randomization (MR) is an increasingly explored method to strengthen causal inference.

Objectives

This systematic review aimed to summarize the causal

Table 1: Mendelian randomization studies included in the review, demonstrating significant associations between genetically predicted Vitamin C (and its metabolites) and multiple health outcomes.

	Health outcome	Reference	Consortium	Cases/controls or sample size	SNP source (No. of SNPs)	OR/beta (95% CI/SE)	p-value	Correct p-value	Key Findings
Cancers Absolute	Breast cancer	Fu 2021	UK Biobank	10,892/237,406	Zheng 2021 (10)	1.34 (1.14, 1.57)	< 0.001	0.01	Significant
ascorbate	Colon cancer	Chen H. 2022	UK Biobank	n = 462,933	Zheng 2021 (6)	0.997 (0.994, 0.999)	0.003	0.0045	Significant
		Zhang 2022	UK Biobank	3,759/416,772	Zheng 2021 (10)	0.774 (0.608, 0.985)	0.037	0.01	Suggestive protective effect
			Meta-analysis UK Biobank FinnGen	3,759/416,772 1,803/174,006	Zheng 2021 (10)	0.764 (0.623, 0.936)	0.010	0.01	Suggestive protective effect
	Colorectal cancer	Larson 2022	UK Biobank	7,543/359,999	Zheng 2021 (10)	0.82 (0.69, 0.97)	0.023	0.008	Suggestive protective
			Meta-analysis UK Biobank FinnGen	7,543/359,999 4,957/304,197	Zheng 2021 (10)	0.84 (0.73, 0.96)	0.013	0.008	Suggestive protective
	Endometrial cancer	Peng 2022	ECAC	12,906 /108,979	Zheng 2021 (11)	1.374 (1.128, 1.674)	0.0016	0.05	Significant risk factor
	Liver cancer	Larson 2022	FinnGen	518/308,636	Zheng 2021 (10)	0.38 (0.15, 0.96)	0.041	0.008	Suggestive protective effect
		Zhang 2022	FinnGen	304/174,006	Zheng 2021 (10)	0.344 (0.139, 0.856)	0.022	0.01	Suggestive protective effect
	Ovarian cancer	Chen H. 2022	UK Biobank	n = 463,010	Zheng 2021 (5)	0.998 (0.996, 1.000)	0.040	0.0045	Suggestive protective effect
	Small intestine cancer	Larson 2022	FinnGen	411/308,743	Zheng 2021 (10)	0.41 (0.17, 1.00)	0.049	0.008	Suggestive protective
			Meta-analysis UK Biobank FinnGen	515/367,027 411/308,743	Zheng 2021 (10)	0.55 (0.32, 0.94)	0.029	0.008	Suggestive protective effect
	Stomach cancer	Zhang 2022	UK Biobank	764/419,767	Zheng 2021 (10)	0.572 (0.338, 0.969)	0.038	0.01	Suggestive protective effect
Circulating ascorbate metabolites	Pancreatic cancer	Zhang 2022	UK Biobank	933/419,992	Shin 2014 (14)	1.398 (1.053, 1.858)	0.021	0.01	Suggestive risk factor
Cardiovasc	ular disease	N(0000							
Absolute circulating ascorbate	Any stroke	Yuan 2022	UK Biobank	12,036/355,525	Zheng 2021 (10)	0.84 (0.73, 0.97)	0.02	0.003	Suggestive protective effect
	Atrial fibrillation	Yuan 2022	Meta-analysis Nielsen 2018 FinnGen	60,620/970,216 17,325/97,214	Zheng 2021 (10)	1.09 (1.00, 1.18)	0.049	0.003	Suggestive risk factor
	Cardioembolic stroke	Chen 2021	MEGASTROKE	7,193/204,570	Zheng 2021 (11)	0.773 (0.622, 0.959)	0.019	0.005	Suggestive protective
		Yuan 2022	MEGASTROKE	7,193/406,111	Zheng 2021 (10)	0.79 (0.64, 0.99)	0.04	0.003	Suggestive protective effect
Neurodege	nerative disease	es							
Absolute circulating ascorbate	Alzheimer's disease	Chen 2021	Jansen 2020	71,880/383,378	Zheng 2021 (10)	0.968 (0.946, 0.991)	0.007	0.005	Suggestive protective effect
		Liu H. 2021	UK Biobank AD proxy	42,034/272,244	Zheng 2021 (11)	0.93 (0.88, 0.98)	0.007	0.05	Significant protective
			UK Biobank Maternal AD	27,696/260,980	Zheng 2021 (11)	0.89 (0.84, 0.94)	< 0.001	0.05	Significant protective effect
Other healt	h outcomes								
Absolute circulating ascorbate Circulating ascorbate metabolites	Varicose Veins	Yuan 2021	FinnGen	13,928/153,951	Zheng 2021 (10)	1.24 (1.05, 1.48)	0.014	0.002	Suggestive risk factor
	Intraocular pressure	Hysi 2019	UK Biobank	n = 1,571	Shin 2014 (13)	-0.696 (0.304)	0.022	0.05	Significant protective
			EPIC Norfolk	n = 8,623	Shin 2014 (13)	-3.219 (1.371)	0.019	0.05	Significant

relationship between vitamin C and disease outcomes based on current evidence in MR studies.

Methods

We searched the Cochrane, Embase, and PubMed databases from inception to 23 September 2022. All published articles using the MR approach to explore potential causal relationships between circulating vitamin C (and its metabolites) and health outcomes were included. Two reviewers independently conducted title and abstract screening, full-text review, and data extraction. Associations with a p-value below the Bonferronicorrected threshold were defined as significant, while associations with a p-value between the corrected threshold and 0.05 were considered suggestive evidence.

Results

□ We included 29 MR studies investigating the causal effect of

- vitamin C on 53 disease outcomes, including various cancers, cardiovascular diseases, and neurodegenerative diseases.
- □ Of these 53 outcomes, 38 showed null associations.
- Genetically predicted higher plasma vitamin C levels (and its) metabolites) have shown protective effects on colon cancer, colorectal cancer, liver cancer, ovarian cancer, small intestine cancer, stomach cancer, any stroke, cardioembolic stroke, Alzheimer's disease, and intraocular pressure; but conferred an increased risk of breast cancer, endometrial cancer, pancreatic cancer, atrial fibrillation, and varicose veins.

Identification of studies via databases and registers

entification

(n = 119)

Records identified from: Cochrane, Embase, and PubMed databases (n = 119)		Records removed <i>before</i> <i>screening</i> : Duplicate records removed (n = 17)
--	--	--

Conclusion

This systematic MR review provides a comprehensive summary of the current evidence regarding the

Figure 1. Flowchart of the study selection process

impact of vitamin C on various diseases, emphasizing its potential implications for disease prevention.

effect

References

1.Hysi PG, Khawaja AP, Menni C, Tamraz B, Wareham N, Khaw K-T, Foster PJ, Benet LZ, Spector TD, Hammond CJ: Ascorbic acid metabolites are involved in intraocular pressure control in the general population. Redox Biology 2019, 20:349-353.

2.Chen H, Du Z, Zhang Y, Li M, Gao R, Qin L, Wang H: The Association Between Vitamin C and Cancer: A Two-Sample Mendelian Randomization Study. Frontiers in Genetics 2022, 13:868408.

3.Chen L, Sun X, Wang Z, Lu Y, Chen M, He Y, Xu H, Zheng L: The impact of plasma vitamin C levels on the risk of cardiovascular diseases and Alzheimer's disease: A Mendelian randomization study. Clinical Nutrition 2021, 40(10):5327-5334.

4.Chen S, Zheng C, Chen T, Huang D, Pan Y, Chen S: Relationship between plasma vitamin C and COVID-19 susceptibility and severity: a two-sample mendelian randomization study. Frontiers in Medicine 2022, 9:844228,

5.Fu Y, Xu F, Jiang L, Miao Z, Liang X, Yang J, Larsson SC, Zheng J-S: Circulating vitamin C concentration and risk of cancers: a Mendelian randomization study. BMC medicine 2021, 19(1):1-14.

6.Hu Z, Zhou F, Xu H: Circulating vitamin C and D concentrations and risk of dental caries and periodontitis: A Mendelian randomization study. Journal of Clinical Periodontology 2022, 49(4):335-344.

7.Hui L, Nelson E, Lin S, Zhao J: The role of vitamin C in pneumonia and COVID-19 infection in adults with European ancestry: a Mendelian randomisation study. European journal of clinical nutrition 2022, 76(4):588-591.

8.Jian Z, Wang M, Jin X, Li H, Wang K: Diet-Derived Antioxidants and risk of kidney Stone Disease: results from the NHANES 2007–2018 and mendelian randomization study. Frontiers in Nutrition 2021, 8:738302.

9.Kobylecki CJ, Afzal S, Davey Smith G, Nordestgaard BG: Genetically high plasma vitamin C, intake of fruit and vegetables, and risk of ischemic heart disease and all-cause mortality: a Mendelian randomization study. *The American journal of clinical nutrition* 2015, 101(6):1135-1143.

10.Kobylecki CJ, Afzal S, Nordestgaard BG: Genetically high plasma vitamin C and urate: a Mendelian randomization study in 106 147 individuals from the general population. Rheumatology 2018, 57(10):1769-1776.